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ABSTRACT
Blockchains ensure that all transactions, including those that
execute deterministic programs known as smart contracts, are
processed correctly andwithout interruption. However, blockchains
inherently provide no confidentiality – all transaction data,
including inputs sent to smart contracts, are public. This has led to
a rise of confidential smart contract blockchains. These blockchains
utilize privacy-preserving techniques to add privacy to smart
contracts, but they usually rely on Trusted Execution Environments
(TEEs) (e.g., [14, 24]) that are susceptible to side-channel attacks
and other security concerns ([7, 13, 33] to name a few).

More recently, several works have focused on achieving
confidentiality using Fully Homomorphic Encryption (FHE) (e.g.,
[1, 30]). While this approach is promising, these works limit
scalability as they require all nodes in the network to execute FHE
computations and reach consensus over the encrypted state, which
is prohibitive.

Instead, in this work and inspired by the recent move towards
layer-2 solutions, we present the first rollup-based FHE architecture.
We argue that while for plaintext computation rollups are a needed
solution, in the context of FHE, where the computational overhead
is orders of magnitude higher, they are a necessity.

In our design, we take an optimistic rollup approach, allowing
us to avoid the orders of magnitude penalty incurred by state-of-
the-art verifiable FHE techniques [34]. In fact, our framework can
be seen as a cryptoeconomic solution to solve the same problem of
verifiability in FHE.

We implement a proof-of-concept of our solution, and in the
process, we show how we can build FHE rollups without making
any changes to existing layer-1s like Ethereum, even if they do not
support FHE operations inherently. We further implement three
smart-contracts that are only possible if data remains confidential,
and show that their performance is practical.

1 INTRODUCTION
Blockchains ensure correct execution and censorship resistance
in a trust-minimized way (i.e., without trusting any centralized
operator), at the expense of data confidentiality. Inherently, all
data on-chain is public, because all nodes need to see the data
to reach consensus. Despite popular belief, this extreme level of
transparency is a by-product and not a goal of the system, and it
greatly limits the type of use-cases we can build, since we cannot
build any application that needs to utilize sensitive data.

In recent years, researchers and practitioners have employed
several privacy-preserving technologies to solve the problem of
confidentiality on the blockchain, in a body of work that became
known as confidential smart contracts (e.g., [2, 14, 29, 30, 38, 39]).
Of all of these techniques, Fully Homomorphic Encryption (FHE) is
perhaps the most ambitious, as it allows to directly compute over
encrypted data without decrypting it.

FHE has improved by leaps and bounds since Gentry presented
the first construct almost a decade and a half ago [18]. Still,
FHE requires significant computational overhead compared to
computing in plaintext, making it impractical for execution at the
layer-1 (L1) level where every node is required to replicate the entire
computation, which is the approach that state-of-the-art FHE-based
confidential smart contracts frameworks are taking [1, 30].

Inspired by the recent movement towards layer-2 solutions in the
Ethereum ecosystem [22, 26, 27], we present the first architecture of
an FHE-based rollup. We argue that while for plaintext computation
rollups are a needed solution, in the context of FHE, where the
computational overhead is orders of magnitude higher, they are a
necessity.

In a rollup architecture, smart contract execution (the heavy-duty
part of validating blocks) is separated from verifying the execution
and reaching consensus. This ensures that only a single node (or a
small number of nodes) is actually doing the computational heavy
lifting, without impairing security. Furthermore, this node can be
vertically (and horizontally) scaled as needed, including utilizing
more expensive specialized hardware (GPUs, ASICs). The latter is
common with zero-knowledge (zk) based rollups 1, which like FHE
also leverages computationally-intensive cryptography, and can be
leveraged in much the same way for FHE computations.

However, in our design, we take an optimistic rollup approach
as opposed to a zk-rollup approach, allowing us to avoid the
orders of magnitude penalty incurred by state-of-the-art verifiable
FHE techniques [34]. In fact, our framework can be seen as a
cryptoeconomic solution to solve the same problem of verifiability
in FHE.

1.1 Our contributions
In this paper, we make the following main contributions:
• We introduce the first layer-2 confidential smart contracts
platform, enabling greater efficiency and scalability.

1e.g., https://www.ingonyama.com, https://www.risczero.com



• Wedemonstrate through a proof-of-concept implementation, that
an optimistic FHE rollup can be built on top of Ethereum, without
making any changes to the base layer. While our work extends
beyond Ethereum and EVM chains, showing that this is possible
on Ethereum today implies that the most used smart-contract
ecosystem can be augmented with confidential smart contracts.

• We implement and benchmark three types of confidential smart
contracts in Solidity: (i) a confidential ERC-20 contract; (ii) a
sealed-bid auction contract; (iii) and a private voting contract.
All of these examples can only operate in a blockchain with
confidentiality.We also demonstrate empirically that our solution
is concretely efficient and practical.

• Outside the context of blockchains, our solution can be seen as
a more efficient (cryptoeconomic) solution to the problem of
verifiable FHE.

1.2 Design Goals and Security Model
1.2.1 Design Goals. Our system is built with the following
objectives in mind:

• Correctness and Availability. A smart contract is executed
correctly and with guaranteed output.

• Input Confidentiality. Nothing is learned about users’ inputs
during the execution of a smart contract. Since computations
are reactive (i.e., stateful), the state can be considered as
another private input.

• Selective Output Confidentiality. Smart contract outputs can
be re-encrypted and selectively shared with the querying
user, or with another with proper permissions. No one else
needs to learn anything about the output. Outputs can also
be made public.

• Efficiency. Execution efficiency is proportional to the
computation complexity of the underlying FHE execution.
This captures the rollup’s efficiency property, which denotes
that there is no need for consensus or replicating the
computation.

In terms of confidentiality, we note that we do not try to hide
the following: (i) identity of the user initiating a transaction (e.g.,
for executing a smart contract); (ii) The smart contract being called,
and the method being called. In other words, there is no circuit
privacy.

1.2.2 Security Model. We assume our Rollup is built on-top of
a layer-1 that provides the usual properties of a blockchain (i.e.,
correctness and availability).

For our Threshold Services Network (see Section 4), we
assume nodes share pairwise secure channels and a broadcast
channel (for the latter, the Layer-1 can be used directly). We also
assume an honest majority between the nodes, as required by
the underlying decryption protocol we use. We note that our
architecture generalizes to threshold decryption protocols that
support a dishonest majority, and that this assumption is not a
hard requirement.

Finally, like other optimistic rollups, we assume at least a single
honest validator (also known as a verifier) exists.

1.3 Related Work
Our work builds upon the existing body of research and
development of confidential smart contract platforms. Unlike all
other works, to the best of our knowledge we are the first to
describe a solution that operates fully and natively as a layer-2.More
specifically, other confidential smart contract platforms usually
differ by the kinds of privacy-preserving technologies they use:

• Trusted Execution Environment (TEEs) Based. Currently,
the only confidential smart contracts networks in production
are using TEEs (or secure enclaves) [14, 24, 29, 37]. These
networks simulate secure computation by allowing users to
encrypt their transactions with keys held inside of a secure
enclave. Transactions then get decrypted and executed inside of
the enclave, which ensures confidentiality as long as we can trust
the security of the TEE. While TEEs are by far the most efficient
solution, they are susceptible to side-channel attacks and other
vulnerabilities (e.g., [7, 13, 33]).

• Secure Multiparty Computation (MPC) Based. Since our
work relies on Threshold FHE, we share a similar threat model
with these works (e.g., [2–4, 19, 38, 39]). However, for the
purpose of presentation, we separate these from FHE-based
solutions, as they often rely on linear secret-sharing [5, 20] and
garbled circuits techniques [36]. The main drawback in these
techniques compared to our work is that MPC protocols need
to communicate data proportional to the circuit size in order to
evaluate it. In the case of secret-sharing-based MPC, all parties
also need to sequentially communicate with all other parties any
time they evaluate a multiplication gate. In the context of public
blockchains, this is impractical, as the latency is quite high and
the bandwidth is limited. Furthermore, as these systems require
multiple interacting nodes for every contract execution, they are
not amenable to a rollup architecture such as the one we are
proposing.

• Zero-knowledge (ZK)-based. Different works have considered
confidential smart contracts using different ZK schemes.
However, since ZK techniques are more suitable for verifiable
computation (e.g., [25]), their utility for confidential smart
contracts is limited. To overcome this, Hawk [23] suggested
having a data-manager – an off-chain party that is tasked with
collecting inputs from different clients and is trusted with seeing
everyone’s data. Alternatively, other platforms impose limitations
on developers [8, 9, 21, 35].

• FHE-based. In the last couple of years, as a result of significant
FHE performance improvements, HE and FHE based solutions
have started to emerge [1, 17, 30–32]. These platforms are closest
to our work, but none of them adopt a rollup architecture, which
limits their scalability in practice. Some of these works adopt a
Threshold FHE structure as we do (e.g., [1]), whereas others such
as [31] allow only limited functionality, and without a shared
state.

2 PRELIMINARIES
2.1 Layer-2 Rollups
Rollups are a scaling solution designed to alleviate the congestion on
the primary layer-1 chain, in particular Ethereum. With Ethereum’s
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growing user base, the need for scaling solutions has become
paramount. The primary goal of scalability is to enhance transaction
speed and throughput without compromising on decentralization
or security. Rollups execute transactions outside the base layer,
posting back state-updates alongside proofs of correct execution.
Ultimately, the layer-1 reaches consensus on these state updates,
but it does so without re-executing the transactions on the base
layer. In other words, transactions on the rollup are secured by
layer-1’s inherent security. There are two main types of rollups,
which differ by how proofs are created and verified:

• Optimistic Rollups. These assume transactions are valid
unless challenged. They move computation off-chain but
post transaction data to the layer-1 (or another data
availability network), allowing anyone to re-run the
transactions off-chain and verify for themselves that the
execution is correct. If any verifier detects malicious
behavior, they can submit a fraud-proof on-chain, in which
case the layer-1 acts as the final arbiter. For this reason,
Optimistic Rollups require a dispute period (often of a few
days) [22].

• ZK Rollups. These rollups similarly execute contracts off-
chain and submit validity proofs back when sending a
state-update. Validity proofs are constructed using advanced
cryptographic techniques known as (succinct) ZK Proofs.
They can be efficiently verified on-chain directly, without
posting the full transaction data or having a dispute period
(e.g., [6]).

Optimistic and ZK Rollups have inherently different trade-
offs. Optimistic rollups suffer from a dispute-period delay,
making finality longer. They also require posting the transactions
themselves on-chain, which negates some of the scalability benefits
2.

On the other hand, ZK Rollups require significant computation
power (and time) to produce a proof, especially the closer you try
to get to native EVM [10]. A related downside is that these rollups
are much more complicated to build, resulting in large amounts
of code. The likelihood of critical vulnerabilities with zkEVMs is
therefore much higher, at least until they have been battle tested
enough over time.

2.1.1 Optimistic Rollups in More Detail. Optimistic rollups bundle
multiple off-chain transactions and submit them to the L1 chain,
reducing costs for users. They are termed "optimistic" because
they assume transactions are valid unless proven otherwise. If a
transaction is challenged, a fraud proof is computed. If proven
fraudulent, penalties are applied. Today, optimistic rollups operate
atop Ethereum, managed by Ethereum-based smart contracts. They
process transactions off-chain but post data batches to an on-
chain rollup contract. Ethereum ensures the correctness of rollup
computations and handles data availability, making rollups more
secure than standalone off-chain solutions or side-chains. They also
create an inherent economic-security alignment between the two
layers, as the layer-2 receives security while paying for incurred
fees at the layer-1 level.

2This is meant to be mitigated to an extent with EIP-4844 and Danksharding.

From an architectural perspective, optimistic rollups consist of
the following:

• Transaction Execution. Users send transactions to operators
or validators, who aggregate and compress them for the
layer-1.

• Submitting to the layer-1. Operators bundle transactions and
send them to the layer-1 using calldata.

• State Commitments. The rollup’s state is represented as
a Merkle tree. Operators submit old and new state roots,
ensuring the chain’s integrity.

• Fraud Proofs and Disputes. These allow anyone to challenge
a transaction’s validity. If a challenge is valid (arbitrated by
the layer-1), the fraudulent party is penalized.

Fraud Proofs play a vital role in optimistic rollups, and they
are at the root of how we ensure that a rollup publishes a correct
state update. Even in the face of malicious nodes trying to delay
or tamper with transactions, the chain’s integrity is preserved as
long as there’s a single honest node that observes state updates
and checks that they are correct. In the context of rollups built
on Ethereum, because the actual data is posted onto Ethereum,
anyone in the world can act as a verifier. Once an honest verifier
detects an incorrect state update (e.g., by including a tampered-
with transaction), it can submit a dispute, which initiates the fraud
proof game: a multi-round interactive protocol. Here, the asserter
(the node that produced the state update) and challenger (the
verifier who issued a dispute) follow a protocol overseen by a
layer-1 verifier contract to ascertain the honest party. The protocol
proceeds recursively, each time dividing the computation into two
equal parts. The challenger chooses one part to challenge each time.
This process, termed the bisection protocol, persists until only one
computational step is in question. Once the interactive protocol
narrows down to a single instruction, it is the layer-1 contract’s
turn to resolve the dispute by evaluating the instruction result as
well as both the asserter’s and the challenger’s claims and their
respective results to determine which one is correct.

2.2 Fully Homomorphic Encryption (FHE)
Fully Homomorphic Encryption (FHE) enables computations on
ciphertexts that, when decrypted, match the results of those
operations as if they were performed on the plaintext directly.

In practice, ever since the original scheme by Gentry [18], several
FHE schemes have been developed, which are based on the original
Learning With Errors (LWE) hardness problem, or related algebraic
constructs such as its ring variant [28]. Our implementation utilizes
the Torus FHE (TFHE) [15] scheme, but we note that our construct
itself does not really matter for the purpose of constructing an
FHE-rollup, we describe FHE more generally below, in a black-box
manner.

A generic FHE scheme can be denoted by the tuple of algorithms
FHE = (Gen, Enc,Dec, Eval), as follows:

• Gen(1𝜅 ). Given a security parameter 1𝜅 , the algorithm
outputs a pair of keys (𝑝𝑘, 𝑠𝑘) where 𝑝𝑘 is the public
encryption key and 𝑠𝑘 is the secret decryption key. Define
domains P for plaintexts, R for randomness, and C for
ciphertexts, as well as the set of permissible functions F .
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• Enc(𝑝𝑘,𝑚; 𝑟 ). Given the public key 𝑝𝑘 , a message 𝑚 ∈ P
and randomness 𝑟 ∈ R, the encryption algorithm produces
a ciphertext 𝑐 ∈ C such that

𝑐 = Enc𝑝𝑘 (𝑚; 𝑟 ).
• Dec(𝑠𝑘, 𝑐). With the secret key 𝑠𝑘 and a ciphertext 𝑐 , the
decryption algorithm retrieves the original plaintextmessage
𝑚:

𝑚 = Dec𝑠𝑘 (𝑐) .
• Eval(𝑝𝑘, 𝑓 , {𝑐𝑖 }𝑛𝑖=1). Given the public key 𝑝𝑘 , a function 𝑓 ∈
F , and a set of ciphertexts {𝑐𝑖 }𝑛𝑖=1, this algorithm produces
a ciphertext 𝑐′ ∈ C such that:

Dec𝑠𝑘 (𝑐′) = 𝑓 ({Dec𝑠𝑘 (𝑐𝑖 )}𝑛𝑖=1).
This implies the function 𝑓 is executed over encrypted data,
and its result is encrypted as 𝑐′.

3 SYSTEM OVERVIEW
Our platform is built with modularity in mind. It includes the
quintessential components of a rollup, alongside new and specific
components needed to support (Threshold) FHE. In this section, we
briefly describe the different components, as they are illustrated in
Figure 1.

Figure 1: Overview of an FHE Rollup architecture

• Settlement and Data Availability (DA). These
components are served by the layer-1. In our implementation
both will leverage Ethereum directly, but we note that any
other layer-1 would work, with the understanding that we
inherit its security.

• Sequencer. Just like with other layer-2 architectures (e.g.,
[22]), transaction ordering is done by an entity known as the
sequencer. In our design, the same entity is also in charge
of transaction (and smart contract) execution, but we note
that this two roles could be separated. The sequencer is in-
charge of submitting layer-2 state updates periodically. A
state update is the result of a batched execution of potentially
many transactions.

• Validators. These are other nodes in the layer-2 network
which observe state-updates submitted by the sequencer. If
any validator observes an incorrect state-update (i.e., the
sequencer cheated), they can trigger a dispute to the layer-
1. In this case, the parties engage in an interactive protocol
between the sequencer, challenging validator (the challenger)
and the layer-1 which acts as an arbitrator (as described in
[11, 12, 22]). At the end of the protocol, there is consensus on
whether the sequencer or the challenger cheated. To further
prevent cheating, it is common to impose financial penalties
on the cheating party. The fraud-proof mechanism is further
described in Section 5.

• Threshold Services Network. Our platform uses
Threshold FHE under the hood, which implies users can
encrypt their transactions using a single public FHE key.
The secret key, however, is shared across a network of nodes
we denote as the threshold services network (TSN). The
TSN is is also in charge of any decryption or re-encryption
operations that need to happen from time to time. We
discuss this in more detail in Section 4.

4 THRESHOLD SERVICES NETWORK (TSN)
A key component in our design is the Threshold Services Network
(TSN). This network is separate from the layer-1 or other rollup
components and plays several key roles. In particular, we assume
that in a setup phase the TSN generates the network’s Threshold
FHE key-pair (𝑠𝑘, 𝑝𝑘) (using a distributed key-generation protocol),
and that 𝑝𝑘 is published onto the rollup’s first block, making it
available to all users. In contrast, the secret key has to remain
private, and is secret-shared across the TSN participants. There
are several threshold decryption protocols to choose from, and
our current implementation utilizes [16], which uses Shamir secret-
sharing to split 𝑠𝑘 into 𝑛 shares, out of which 𝑡 +1 shares are needed
to reconstruct.

4.1 Threshold Decryption and Re-encryption
Occasionally, the network will need to decrypt certain results, or
re-encrypt them to a designated user. The TSN is in-charge of any
such request coming from the rollup.

To illustrate why this is needed, consider the following two
examples. First, imagine a private voting contract deployed on
the rollup. When users vote for a certain candidate, they encrypt
their votes, and the contract tallies these votes (all encrypted). At

4



a certain point in time, a functionality in the contract should be
able to decrypt the tally and announce the winner. This request is
routed to the TSN, which decrypts it and returns the result to be
stored in the contract’s state. This flow is illustrated in Figure 2.

Figure 2: Smart contract request to decrypt FHE-encrypted
data on the rollup

A similar example is that of a user who owns a NFT with private
metadata only they can see. Suchmetadata is stored in the contract’s
state under the network’s key. When a user tries to access that
information, the contract should threshold re-encrypt it so only
the designated user would be able to decrypt and get access to the
underlying data.

4.2 Security
It is important to note that the underlying confidentiality
guarantees of the entire system are closely related to the trust
assumptions of the TSN. Anything that relates to keeping the
threshold decryption key safe, correctly decrypting/re-encrypting
ciphertexts, etc., is under the responsibility of the TSN.

Currently, the state-of-the-art protocols by [16] require the TSN
to have at most 𝑡 < 𝑛

3 malicious corruptions for a fast and robust
protocol, or 𝑡 < 𝑛

2 if we are willing to settle for security with abort.

5 FRAUD PROOFS
The key to Optimistic Rollups lies in their fraud proof mechanism.
But how dowe fit that mechanism, in particular Ethereum’s EVM, to
work with smart contracts that execute FHE circuits over encrypted
data?

First, observe that FHE, unlike other encrypted computation
techniques such as MPC, natively allows anyone to verify that

a computation was done correctly, without breaking the privacy
guarantees. This is because an adversary holding the encrypted
inputs and outputs learns nothing about the underlying encrypted
data (if this were not the case, then the encryption scheme would
not be semantically secure).

This makes verifying FHE computations compatible with the
idea of Optimistic Rollups, at least in theory. As mentioned earlier,
Optimistic Rollups are based on posting the full transaction data
on the layer-1 (or some other data availability service), alongside
the output. In this case, both are encrypted. Just like with plaintext
data, any off-chain validator could take the encrypted transaction
data, re-execute the transactions, and make sure that they receive
the same encrypted output. If this is not the case, then an honest
validator could submit a dispute and start the arbitration process
with the layer-1.

However, the whole fraud proving mechanism is rooted on the
layer-1’s ability to determine unequivocally whether the layer-2
node that posted the state update or the disputing verifier (i.e., the
challenger) is cheating. To do this, the layer-1 needs to be able to
run a single computational step of the underlying computation.
Since our solution relies on the security of the layer-1, we wish
to use Ethereum in our implementation as it is the most secure
smart-contract platform. But this introduces a new challenge: How
can Ethereum, or any other layer-1, validate execution on FHE
primitives without inherent support for FHE operations?

To overcome this challenge, we utilize Arbitrum’s Nitro fraud
prover 3, which has an Ethereum contract on-chain that can verify
the correctness of a single WebAssembly (WASM) opcode. This
is sufficient, as we can now compile the underlying FHE libraries
(which are written in Rust) to WebAssembly as well, and avoid
requiring changes to the layer-1 itself.

Addressing performance concerns, it is rational to assume that
if FHE computations are inherently intensive, simulating them in
a WASM runtime atop EVM might incur significant performance
penalties. While this is a valid concern, it is important to remember
that initiating these computations is only mandatory in a dispute
scenario, and real-time speed is not an absolute necessity given a
sufficient dispute window. Considering that the standard practice
allocates approximately seven days for it, we estimate that this is
more than sufficient time to settle any such disputes. However, we
did not empirically validate this hypothesis, and we note that doing
so in the future is important.

We defer additional implementation details regarding the fraud
prover to the appendix (Section A.3).

6 EVALUATION
We implement a proof-of-concept of our layer-2 FHE rollup system
4. Our architecture is based on the Arbitrum stack [22], and uses
Ethereum as the layer-1. For FHE capabilities, we use the tfhe-rs
5 library, which is written in Rust. We then implement a Solidity
wrapper on top, such that we can write standard Solidity smart
contracts. Figure 4 is an example of such a contract for private
voting.
3https://docs.arbitrum.io/inside-arbitrum-nitro
4https://github.com/FhenixProtocol/tfhewasm, https://github.com/FhenixProtocol/go-
tfhe
5https://github.com/zama-ai/tfhe-rs
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Figure 3: Fraud proof engine for FHE instructions

As a first step, we benchmarked elementary FHE addition
and multiplication gates under different VMs, and for (plaintext)
integers between 8-256 bits. As can be seen in Table 1, the
performance gap between the VMs increases with the bit length.
This is expected due to the underlying TFHE scheme [15]. However,
on a per dollar basis, choosing a stronger VM does not justify the
cost.

We also implemented three confidential Solidity smart contracts
of real-world use cases. These include a confidential ERC-20
token contract (allowing for private transactions), a private voting
contract, and a sealed-bid auction contract. For all contracts, we
used 32-bit encrypted integers. The results are summarized in Table
2, and they illustrate that our solution is practical and concretely
efficient.

7 CONCLUSION
In this paper, we presented the first proposed construct of an FHE
layer-2 rollup, a novel solution that adds confidentiality to existing
blockchains. Our approach leverages the power of FHE to enable
encrypted EVM computations, revolutionizing the way transactions
are executed and confidential data is handled on-chain. Unlike
recent works [1, 17, 30], our approach uses a layer-2 rollup structure
to avoid replicating the cost of FHE computations across all nodes,
which leads to a much more efficient and practical solution.

While our implementation focuses on Ethereum and the EVM,
our construct is generic and can also be of independent value as a
system that enables verifiable FHE [34].

pragma solidity >=0.8.19 <0.9.0;

import "contracts/FHE.sol";
import "contracts/access/Permissioned.sol";

contract Voting is Permissioned {
uint8 internal constant MAX_OPTIONS = 4;

// Pre-compute these to prevent unnecessary gas usage for the users
euint32 internal _u32Sixteen = FHE.asEuint32(16);
euint8[MAX_OPTIONS] internal _encOptions = [FHE.asEuint8(0),

FHE.asEuint8(1), FHE.asEuint8(2), FHE.asEuint8(3)];↩→

string public proposal;
string[] public options;
uint public voteEndTime;
euint16[MAX_OPTIONS] internal _tally; // Since every vote is worth

1, I assume we can use a 16-bit integer↩→

euint8 internal _winningOption;
euint16 internal _winningTally;

mapping(address => euint8) internal _votes;

function vote(inEuint8 memory voteBytes) public {
require(block.timestamp < voteEndTime, "voting is over!");
require(!FHE.isInitialized(_votes[msg.sender]), "already

voted!");↩→
euint8 encryptedVote = FHE.asEuint8(voteBytes); // Cast bytes

into an encrypted type↩→

ebool voteValid = _requireValid(encryptedVote);

_votes[msg.sender] = encryptedVote;
_addToTally(encryptedVote, voteValid /* , _one */);

}

function finalize() public {
require(voteEndTime < block.timestamp, "voting is still in

progress!");↩→

_winningOption = _encOptions[0];
_winningTally = _tally[0];
for (uint8 i = 1; i < options.length; i++) {

euint16 newWinningTally = FHE.max(_winningTally, _tally[i]);
_winningOption =

FHE.select(newWinningTally.gt(_winningTally),
_encOptions[i], _winningOption);

↩→
↩→
_winningTally = newWinningTally;

}
}

function winning() public view returns (uint8, uint16) {
require(voteEndTime < block.timestamp, "voting is still in

progress!");↩→
return (FHE.decrypt(_winningOption),

FHE.decrypt(_winningTally));↩→
}

function _requireValid(euint8 encryptedVote) internal view returns

(ebool) {↩→
// Make sure that: (0 <= vote <= options.length)
return encryptedVote.lte(FHE.asEuint8(MAX_OPTIONS - 1));
//FHE.req(isValid);

}

function _addToTally(euint8 option, ebool voteValid /* , euint16

amount */) internal {↩→
for (uint8 i = 0; i < options.length; i++) {

// euint16 amountOrZero =

FHE.select(option.eq(_encOptions[i]), _one, _zero);↩→
ebool amountOrZero =

option.eq(_encOptions[i]).and(voteValid); // `eq()`
result is known to be enc(0) or enc(1)

↩→
↩→
_tally[i] = _tally[i] + amountOrZero.toU16(); // `eq()`

result is known to be enc(0) or enc(1)↩→
}

}
}

Figure 4: Excerpt of a Voting Contract.
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Table 1: FHE addition and multiplication using different VMs and for 8-256bit plaintext integers.

System Addition (ms) Multiplication (ms)
VM Cores Price/yr 8 16 32 64 128 256 8 16 32 64 128 256
I9-13900K 32 $1,000 47.527 71.752 122.07 202.26 440.57 975.29 99.034 207.35 589.84 2084.2 7715.5 28946
R7i (x32) 32 $18,230 49 77.98 121.4 159.05 343.57 770.72 102.49 205.44 493.72 1587.2 5861.6 21777
hpc7a.96xlarge 96 $62,208 63.201 83.203 102.75 120.27 145.52 192.26 119.14 164.41 229.74 412.67 1059.4 3446.3
m6id.metal 128 $52,790 70.5 100 132 186 249 334 144 216 333 832 2500 8850

Table 2: Benchmarking different Solidity Contracts using
FHE

Contract Name Transaction Time (ms)
FHERC20 transfer() 832
Voting vote() 620
Auction bid() 3500

Additionally, we also laid out the architecture of our proposed
FHE rollup system, including its components and layers, and have
proposed and implemented a proof-of-concept of a fraud-proof
solution that requires no changes whatsoever to Ethereum. Our
proof-of-concept results illustrate that our system is practical for
everyday use.
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A IMPLEMENTATION DETAILS
A.1 fheOS
The core FHE logic sits in our fheOS library. It is an encrypted
computation library of pre-compiles for common encrypted
opcodes, such as comparing two numbers and doing arithmetic
operations like addition and multiplication. It gives Smart Contracts
running on the network the ability to use FHE primitives within the
contract. That means that dApps running on (or using) the rollup
will be able to integrate encrypted data in their smart contract logic.
Developers will have the choice to decide what will be encrypted
and what will remain plaintext. fheOS is an EVM-friendly wrapper
around FHE libraries, similar to fhEVM [1]. For implementation
purposes and modularity, we opted to design our own version.

The fheOS library is the core engine of the rollup node; smart
contracts utilizing encryption features will call fheOS precompiles
for common FHE operations, and fheOS itself will be responsible
for communication and authentication between the rollup and the
Threshold Services Network (TSN, see Section 4) for decryption and
re-encryption requests while proving that the decryption request
is legitimate.

The fheOS library is designed to be injected as an extension into
any existing flavor of EVM, meaning that it is fully EVM-compatible,
thus keeping all the existing EVM functionality in place while
boosting developers’ ability to explore new use cases.

A.2 go-tfhe
As we sought to extend the capabilities of Ethereum’s go-ethereum
(geth), their predominant client written in Go, we encountered
a challenge: the core FHE mathematical operations library, tfhe-
rs, is written in Rust, necessitating communication via a foreign
function interface (FFI). To address this, we developed go-fhe, which
encompasses:

(1) Go-based API. This component provides all essential
interfaces for executing FHE mathematical operations using
Go. It serves as the primary point of interaction for
blockchain developers familiar with Go.

(2) Rust Wrapper for TFHE.rs. We created a specialized
wrapper that adapts the TFHE.rs library functions for
blockchain applications.

(3) FFI Integration between Go API and the Rust Wrapper.
To bridge the two languages, our interface employs cgo and
extern "C" mechanisms. This facilitates bindings between
Golang and Rust, aligning function calls, types, and naming
conventions.

In general, go-tfhe acts as a modular extensionable lightweight
bridge between tfhe-rs and the blockchain application.

A.3 Fraud Prover Implementation Details
During the course of developing the proof-of-concept FHE fraud
prover, we had to overcome several hurdles, which we note here
for completeness.

First, To run go-tfhe as a part of the fraud proofmechanism, it was
necessary to adapt the code for execution inWebAssembly (WASM).
Given our reliance on FHE code written in Rust, while much of
blockchain code is traditionally in Golang, we faced challenges in
native compilation to a unifiedWASMmodule - the default bindings
between Rust and Golang use cgo, which is not compatible with
WASM. To address this, we crafted bindings in WASM to bridge
between Golang, using the mainline Golang compiler’s external
function directives, and Rust, creating a dedicated Rust file as the
primary WASM build target, eventually linking both using wasm-
merge for a cohesive .wasm output.

Furthermore, we had to modify tfhe-rs as well. At the time
of this writing, tfhe-rs supports compilation and execution of
WASM in browsers only. In our case – smart contracts running
atop of a blockchain – the interfaces available differ from those
of browser contexts. Notably, some API calls, such as accessing
operating-system capabilities or multithreading, are not accessible.
For TFHE.rs to be compatible with a smart contract context, two
primary modifications were made:

(1) Disabling Multithreading. Given that most smart
contracts do not accommodate multithreading or
concurrency, the code was adjusted to operate in a
single-threaded and deterministic manner.

(2) Custom Random Number Provider Integration. The
initial version of tfhe.rs depended on predefined random
number providers or seeders. The only available seeders were
contingent on the operating system’s ability to generate
random numbers. We introduced a custom seeder managed
by the library user. This seeder receives an input seed and
passes it into a ChaCha20-based seeded Pseudorandom
Number Generator (PRNG) provider. This modification
negates the need for non-deterministic random numbers
in the FHE implementation, facilitating external validation
by replicating computations using consistent inputs from
blockchain data and state.

We note that based on our benchmarks of tfhe-rs running in
this context show an order of magntitude performance degradation
when using wasmer/cranelift and 8x when using wasmer/llvm for
add operations (tested on i9-13900K, 128 GB RAM, wasmer 4.0). We
note that the Arbitrum fraud proof engine makes use of software
floating points which should impact performance further, but we
did not complete benchmark tests as of writing this paper.
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